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Form of the Problea. Using matrix notation, the standard problem

may be writien
(1) Mininlze w» - b
subjest to w® > &°
and w * 0, v integer

where b s an m X 1 <oluan vector, bo is a scalar, ¢” and 0 are 1Xn row
vactors, A° 1s an min yrectangular watrix, and w is & 1Xn row vector
whese values we wish to find so as te achleve the minimlaation objective
and satisfy the econstraining cond'tions of (1). The fact ¢hat w must be
integewl distinguishes the problen from the general linear programming
problem whieh allows w Lo have frastional components.

For the purpose of this paper we define the m{(m + n) augmented
matrix A and the WX{m * n) sugmented vextor 5 by

2 1)9 e {@0 o)?

A = {4
(where T 15 the mXm identlty matrix) and rewrite {1) as
{2) Minimize wb ¢ 'bo
subjest to  wA > e, w integer.
We assupe without Joss of generality that the augnented matrix {-b A) is
lexicographically negative by row, for if it is not Il may readily be
made so  {ses (11}, Followlng Gomory's terminology [3), we will call
our method an ali-integer algoritha, for we additiomally require that all
elements of A, b, and ¢ be integral, or at least commensurable. In praztical
teyns thls is of course no restricotion sinve numbers are reprosented in

the computer with finiie decimal expansionez in any case.

Tools of the Algoritha,

1, A set of tranaformations which will shange the problem into a

new problem fn nonmegative warlables so that any optimal integer solution




to the new problen provides an optimal integer dolution to the original,
and sonversely. We will ¢all thess iransformations elememdzl Lwansforafbions.

2. A provedural mle {zcugled with a mile of choies) for applylinrg
the elemental fransformabions In order fo create & new problem conbaining
a submatrix of 2 speelal formn, whieh we will wall the bounding foma,

3. A process ealled the bound esralation method for opsrating
on the bounding form to supply lower bound values for some set of the
problen variakbes.

Thus the algorithn may be rcughly sketehed as follows,

1. Apoly a seri¥s of elemsnial transformations to obtain an
squivalent probiem in new varlables which exhibits a bounding form mafrix B,
2. Apply the bound esealatlon method to B, At the end of the
prozess the lower bound walues assigned to a subset of the problem warlablas

will satisfy all the cohstrainie assosiated with B.

s AdJust‘the ¢ yastor to refleet the assignmeni of lowsr bounds
sstahlished In 2. If ¢ beczomes nonpositlive, the probhlem is solved.
Utharwiss, return to 1 and repect.

Several features of the algorithm may be noted. First, the problan
is solwed directly, l.a., no refsrence iz made Lo the dual. Sectnd, thers
i3 ne plyoling pregese in lhe customary Torma.

Thus, the elemental trancformations are applied until btha problem s
reagy for the bound escalation wethod, and then the ma=hfnery for the
lakter i5 set 1nto astlion. Those who wish may relate thass two steps to
a form of deferred pivoting and abbrevialsd pivcting, respeslively, but
attemplts Lo salvagy the pivoting concept ars inesssptial o undertianding
the proceas.  Thisd, no use Is made of plask varizbles fo franuform

tasgaatione Inte eguéticns.  Fourlh, the melhion wirks gonsral’y na




sat.isfy some sey of sonstraints simultanecusly with the hound escaiatidn
methad rather than taking the more narrow Impediate view of satisfying
a single eonstraint. Fifth, the bound escafation method lsawes all
zenstraings of the bounding form satisf{ied, whereas the pivoting prosess
of other Integer algoribhms may not in one step completely satisfy
the sonstraint to whigh they are applied. Sixth, berause thare 1s no
custamary piwet operation; a cholire among eliglble pivotal.constrainﬁﬁ
is raplaced by 3 sholiee of anothar sort,; i.e,, that of the sequence
of elemental transformatlons with which to establish a bounding form.

We will now lay down the Wasis of the algorithm. Proofs of the
lemmas to follow will be found in Appendix 1.

v

i. Zhe Elemeotal Transformaiions.

. ra
Conaider the set of tesasforms T = T; . ) bo oma e} 2., ., m,
Ew

‘ ‘ . 5

¢ % 8, where v8 define the componemia t, . of the mim mairix Tk by
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1 der, S8

ithe Fronecker delta) otherwise,
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foregoing remarks,

We now Introduce the following two problems
(3) Minimize wb - %
subject to wA 2> ¢
and
(4) Minimize z{(Rb) ¢ bo
subject to  z(RA} 2 o,
whi«;“;{x ve relate by the followlng two lemmas,
é&% 1. Assume that (3) and (&) have finite optima, and that R may he

decompysed into a pmdu@t, of elemental transformations. Then the vector

H
fome?

oo 5qte§ez° . ]
w* i3 a feasible (optimall/solution of (3) if and only if 2® = w*R
1
\
s a feasible {optimal) integer solution of (4).
Leuma 2 ! Let R be any transformation for which Lemma 1 is universally
true for the standard integer programming problem of formulation (1)
{1.6., for any A°, b, and ¢ satisfying the Iinite optima resteietlion),
and let R, be obtained from R by reindexing twe columns of R. Then sither

0
R or R, #an be expressed as a product of elemental transformations.

0

Yinse reindexing two eclumns of R zorresponds to reindexing lwo
rows of the augmented matrix (b A), and sinee the latier mersly
shanges the order in which we 1ist the variables without changing the basie
problem in (3), Lemma 2 shows that there is a form of universality
inhersnt in the slemental transferrations in their application to the
integer programming problem, o
For the present algorithm we wish to restrict R so.mewhat, more than

in Lemas 2 and 2. To farilltate the ensuing discussion we record problems

{3) and (4),knxthm respertively, in thestabular forms




{3} : i
=b A
b e
o — ﬂ ---l-m------J
(& i :' ir-- e A M r“T
b RA
e e e —
b z
; 0

and define the augmented watrices corresponding tc the upper portions
of 13') and (4°) to be the tableay matrices of problems (3) ana (4).

We observe that the first eclumn of the table (3') corresponds to the
objective funetion wh ¢ bOg and that the successive columne identify
the ecnstraints given by the matrix lnaquation wA > =,

One of the resiricticns we wish te put un R is thal the tablean
matrix of {4) is lexicographically negative (by row) whenever the
tablequ matrix of (3) is lexisographically negative. The other io that
the necessity for any feasible solution of (3) to be nunnegative implies
that any feasible solution of (4) will be also. |

It we fastor R intc alemental transformations, we see that
we are assured of both ¢f these provided each successive factor of R
assures them. For after each shep we may redefine A and b to equal
the matrix and vector RA and Rb Just obtalned, and reapply the result ,
By means of this rcascning we take dare of the nonnegativity restriction in
Lemma 3, Assume that any feasible sclution of (3) must be nonnegsat.ive,

and let z* denbbe any feasible solution of (&), Thsn z2* > 0 &8 implied

ny either of the following,




4y R = T° forany rand s {r ¢ s).

1
(i) r = Tgs and thers exists a | such that
e v 0, . - > > 0.
@J > 0, ajj 0 fori # 5. and arj P &sj > 0

Lemma 3 says that we may always assure that z* > O by
subt.ractiag one row from another in the tableaw matrix. TI we add one
row to another we may still be assured thait z* > O provided we identify
a J sueh that (a) ¢ > 0, and (b) the jth column of A will have all
eomponents nonpositive after the addition except 8, ¥

This special form of the Jth eolumn of A in zbnjunctlion with ¢ 3 >0
i8 of particular interest to us, It provides the fundamental unit of
the Pramswork on which we operate with the algorithm to convergs to an
optimal solution. Drawing on Lemma 3 we now show how we may manufaeture
this type of 0 lumn by 2 sequence ef elemental transforms, simultaneously
preserving the desired restrictions on the problem form.

Lemma /4. Assume that (3) fx has finite optima, satlsfies the nonnegativity
and lexicographic ordering restrietions, and that the component ¢ J of @

is positive, Further assume that the tableau matrix consists entairely

of integers. Then the following methed defines an R in a finite number

of steps so that problem {4) satisfliss the sams restricticns and so hhal
the Jth zolumn of BA ~oniaina exaetly one pesitive component.

l, Begln with R -~ [. '

2. Selevt a positive component ot (a,,“’,,‘«" whers 4ai (an) denot.es
the Jth valann of &

If these are no ciher pos'tive eiemants in (a J.) the procedure
is compaeted. Utherwize pick a ssdond positive component of {a,J} and

define the subseripts r and @ so that a_, 18 the romponent associalsd

o

with the lexicographi«ally smailer row of the tableau matrix and 8.5 is




the component assoelated with the larger row.

4o Redefine A and b to be Tiﬁ A and Tis b (l.e.. subtract
row & from row r in the tableaw matrix), redefine R to he T;B R, and
relurn to instruction 2.

It is evident that there may be a wariety of ways for reducing the
©0lumn {an¥ to the desired form by the method of lemma 4, some cof
swhizh may be more effiecient in terms of the number of steps requirced
than others. One immediate way that would generally reduce the numbsr of
sheps would be to replaece Tig in Instrustion 4 by (T;g)hﬁ where h 15 the
largest integer multiple of row 8 which when subbragted from row »
wili ieave the resulting fow vector lexicographically negatises. However,
at we shall see, the different ways of reduecing (aﬂJ} also may he more
or lese etflctent in terms of the extent to which we ragn expleil ihs
etructure of the resulting tableau matrix. Hence at this point we

thooss ot Lo be restriciive.

fI. The Beunding Form ard the Bound Escalation Meinod.

Let ) be a matrix whose columns correspond tu some subset of the
~glumng of A, and lef d be the row vestor which wurresponds 2o - in
axa-tiy the same way that Rxex D corvesponds to A Further apppose (1)
each sclumn of D «ontaing exaetly ome positive romponent . and (41 at least
one of Lhe sntreies of 4 'e positive. Finally. ie* B be “he mabely
obtained from § by #liminating all rows in which ao jositiece :lerent
appears  Then we define B to be a bounding form of 4.

in Lhe cxirene. 1 mag consist of a glngle ~olaun of & and ¢ a single
positive couponent of tle @ vestor, whish 18 the ~onfigura‘ion <hirh

.

Loemad . Bhows hor to manufasture,  In this ~ase the mairix B ~ons:ists

oA the plugke positise compcnent of D, We cbseewe that ‘ha inegustion

1)
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we may shednk w to x o the same way that 1 was red

Wi > d by xB

latter, wa have inplizitly a w* whica satlsfles the

the forw of x B enables us *w find an x*, henve a w',

d, so that whenever we find an

notegonits dJefined &y
s bhe princtpie nac

ared to B, and pepla.s

2" o sabis?y the
former. Foreover,

suehl that the

sopstraining relation w > w* must be satisfied by any feasible

solution of {(3). ‘T

will soon show how to exploil) may be deweloped.

Lemna 5. Let U, B. £, and x he glven as ahove

finits opiime with all variatles constrained normegative.

finfte number of steps

lowar bound walivzs for the component of 4 which wili savisfy

1, Len x =

following lemmas show how such & relation {(which we

We asswne what (%) has

Then ia &

the fellowlng provedurs will fine ronstrained

Wl

2, IF all components of 4 are nonpositove, po to fastrustion 4.

Otherwise, plek s positive womponent, say N {For explictiness. a

reasonakle rule !s to let ﬂi

3. Inerement x, by o <d,M o
nert x, by mg, Sdgb g

pesitiye elanest 1r the jth codmm of B, Hedwfias
% 4 s
SRS db 7 b, where (B o) s the koh row o
J okl & K

W

somoena®s of x are glven by the x vertor, vos

aelog 0 At least one of the components of i
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we will itiusrrote the metsod of lenma S wi b the

Jol owing exomple nroblem, already din tsbulur form,

. — i a2+ et ommet  r mmd
e im e s e —— S —

Sy s =l 24
3 0 -3

= 37 3

3 .
rt i e ks 48T R 0 et R FH B AR o RS i et

D e e

20 w (] 10 -8

Feom t0e last ‘wo columas we identify a boundinr furm we ich

we <& up in a sneller {able to demonstrate {he melhod,

!
!
|
3
i
1
|
3
i
bl
g
iz

ihe =uccessive adjusrments of the ¢ vector aye shown in the
addational rows belowthe bowding form and the orisinal 4
vecior.  Beside each vector is the ingremen' of ihe varia-

ble wiich created that vector out of he nrevious one.

Hevce we end up with wy = 3 and wy = 5. It may be veri-

fied by substiiutien that t(hese ve'urs satisfy tne consgivaints

Y,

seuci ted wish the hounding“fors, and in fuct in this case

sai «siy all he consirainte of the nroblem.

wiite she srecoaure qust piven is suf{licient o [
L




1

‘he desired lower bound valucs of w, the complete bound
escaluetion method is designed to shorﬁc&t this procedure
by exploiting cerfain prorerties of the bounding form.
We tuyrn fto a considera ion of these nronerties with the
following definitions,

Lei B and E be bounding forms of & such thaf B is a
submairix of E (or the same ag E}. Then we will catll B a
subfomm Of E, |

If each vow of rhe bounding form % has exac*ly one

?usitive ciement, we will cell B & prime bounding fogrm,

Similarly, B will be cafled a prime subform of any bonnding
form £ if it is a subform of E and 2 prime bounding form.

e note thatr everv bounding form has at least one nrime
subform, and slso “hat every subform of a nrime bounding

orm is a prime subform.

$5

In the follewing examnles of matrices with fheir ass
sociaied d veciors below them, {(a) defines a bounding form,
{b) defines 2 prime subform of (a), and (c), though it
may be abstrpcted from (a), does not define a bounding form
at all since none of the components of its d vector are nose
itive. Fineliv, (4) fails to define a bounding form on ftwo
counts, rhe firs' columm contains more ihan one nosirive
compenent and ‘he second row con-ains none. lHowever, the
form of the las two columns is such that we may permissibly

create « bounding form out of them by removing the second row,




() 6 3 ~1 -3 () 0 -1 -3

a2 e 2 -2 5
0, =3 =] <0 0 ~1 sl
4 0 b ~2 4 1 Y
(e) @ 2 -1 3
! = N RS R
L R 37 -4
0 2 39 .6

Lemma 6, Let E b2 2 prime bounding formy, and B a subform of
E, Let d be assocziated with B as before, and defing fthe
vector ¢ = 6B™Y. Then there exists a unique subform BY of
% such (hat (i) B¥™% consisrs onjy of nonnegative comprnents,
(1i) each r,* is posifive, (iii) if w¥ is any feasible
solution cof (3}, *hen wjkﬁg %k*;>, where the index jk
corresnonds to k as the indices of ¢ correspond to those of
d*, (iv) if aay oiher subform B of £ sutisfies properties (i)
and (iii), then B* implies a vefue for each of the comHonents
of w* (in the manner of (iiiljthar is at least as large
as imnlied by B
Lemma 7, We use rhe nerutiom of the preceding lemma, and
let h be the vector zssociated with B as d is associated
with B, “Then the following method finds the waluss of the
rk*°

we assuwme for convenience that E is indexed :o that

its pusitive elements lie along the nrincipal diagonal,

1

3

Select any positive h; in 5 for which the subscript




§ has not been chosen rreviouslv. If none exisrs, go to

inetrction 4,

2. Locate the corresnronding nositive entry €jj in the

0 58
c:,mi " ve o By

b omarrix and reduce the L ma1rixfby the Gaussi.n reduction

nethod on the jth row of E, All e'ements of *he jrh row

Lecome O excer: the new €50 which is 1,

3, Redefine & and ¥ to be the m tzix and vector resule

“ing trom stepd, and retura to 1.

4, The va'ues of the rk* are read directliy from the
finsl h vec cr. B* is ideatified as the subform of E whose
colunns corresrond 'o the nositive components of hy and

r,* is the kth such positive component, We obtain the core

k
resonding inwer bounds for w as in lemm: 6.

we remark inad in sten 2 above if ejj rurns oul to

be nonresitive the problem lacks finite optima and 'he

rrocess may be terminated.

ve may illustrate the foregoing method with the same

vroblem vsed to tllusiraie he method of lemme 5. We write
be ow orly 'he bounding formy, which we have indexed %o COr=

rescond to rhe srecifications of lemma 7.

R ;
24 é
1A 3
BB
Lk 1
5.
i
' g ' LM e forer PR wi T L B D O =03
. o ow i o cleesgan W Flomir o a E
[ ]
L]
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We obrain the inweger lower bounds for Wy and w3 by round-
ang the given walues unwird, or w; = 3; wg = 5, In this

ase ihe bounds are toe same as found by 'he method of 1emma

La

Jy which we know sa isfy -he consTraints of the bounding
feem, this will not dinveriablv happen, nor will the amount
of commuiuticn required by the two me iods usually be so
rneagly “he same. Generally sneaking, the bounds implied

bv the wethod of lemma 7 will fall s mewhere below those
implied by the method of lemma 5. On *the other hand, there
mav be computational savings of severa' orders of magnirude
bv using the bounds of lemma 7 to provide {he meThod of
terma 5 with a head sturt, lJhe extent of tne savings will
denend toth on the nature of the E matrix of tewme 7 and itsg
associated h vector. In geneval, *he method of lemma 7
should be brpassed only 3{ h hes not more than 2 singie
positive companeng hjé and the ratio hj/ejjjs less than
or egual o 1,

With e fo lowirg two defini:ions we comnlete the
inventary of the tools of the bound escalatiou method, which
is presenved immediately foitowing,

he will cali B the digrivgnished beund’pg Torn of o
if 81l otheg bounding forms of A are subtorms of B, We wilt
cat) the prime subferm & of 2 mexinal prime :ubform if E

[

has the same aumber of colevmng as ) has rows.




The Bound Lscalation Methad:

1, Identify the distinguished bounding form B of A,

2, Select & maximal prime subform E of B and apply the
procedure of lemma 7 to E, (The method of lemma 7 may be
bvpassed if h has only one positive comvonent hj, and hj/ejj's 1.)

3, Use rhe lower bonnds obtained from step 2 as starting
values for the commonents of x in lemma'S, define the
svarting value of d as ¢ = xB, and anply the method of
lemma 5 to the coiumns of B corresponding to E, If any
consiraints of 8 are left unsatisfied, apply lemma 5 to all
of B.

11f. Jranslafion of the Problem and Convergence to Optimalii.y.

We now show how to take advantage of the lower bounds
produced by the bouncd escelavion procedure in the last stage
of the algorithm. Consider *he problem

"

(5) Minimize wb + b, « w0
subject tc wA 22 ¢ - wUA,

We relate (5) to (3) bv means of
Lemme 8. Let w® be any vector, and assume the (3) and (5)
nave defiuite optima, Then if Wis a feasible (optimal)
solution of (5), w¥ = Y o+ wlisa feasible (optimal)
solution of (3), and cenversely,

Lemma 8 tells us that we may let w® be the vector of
lower bounds for w established by the bound escajation proe

cedure and replace problem (3) by problem (5). Since w*2 w°,

o Ry ‘ﬁ" . e .
this will keep w : w* =+ w° nonnegative, We know that

the new ¢ vector (equal to the old ¢ = w°A) will be none-
positive for all consuraints ascociated with the old bounding

form. 1f anv comnoments of ¢ are still positive we may use




the method of lomma 3 to creante a bounding form that is
wssoviated with at least one of these components, and repeat
the nrocess. Svpnose thar on some step of exchanging (3)
for (%) ir +turms out thai ¢ - w®A becomes entirely none
povitive, Since with cach appiicaticu of lemmz 3 we ﬁave
maintained b & O, aw! atso constrained w to be nonnega*ive,
2 rrivial opramal selution to {5) is 1o lefﬁg = (O,

Thus 1o assule that rhe zigorithm works and that we can
take wivantage of it if thers nrve two problems: we must be
aple 1o foyce ¢ eveniually to become nenpositive, and we
nost Be able ro salvage the wh which gives the optimal
solution *t¢ the ovigindl problem given'@" = Q in the final,
After formalily ourlining the steps of the algorithm we will
address ourselwes to these two problems.
geperni Borm off the Algosdthme

1. Deregming whether all components of ¢ are nonpositive,
If se, we ar2 through, ODtherwise.

2, Create a bounding form by the method of lemma 4,
Make anv legitaima'e row sddifions as desired.

3. Apuly ihe bosnd eccalation method to find 3 lower
yorng vector w¥ wnich will satisfv all constrain's of 1he
suinding o,

4. Readefive by to be wPb + Ty, redefine ¢ to be
e - wPA, and return to 1.

faate (293 nroviles the wvenicle for the bookkeening
sarce all upiaving 3¢ handled by wdding or

Drvaoting vows 10 (V) ot lowed by subtracting nositive




integer lineat combinutions of the unper rows from the bottom
FOW,

the fo'lowing lemma siiows thar with the bookkeeping
provided bv table (3'), the problem of finding the optimal
solurion to the original problem given that Q‘ = 0 in the
final breomes {riviai,
Lewma 9. the opiinmal solution w¥ to the original problem
is the negative of the vecror in the final fable in the
tocation corresnonding to the rortion of the ¢ vector that
was originaily £he O vectur associated with the congiraint
vi 2 0,

e compleie the specification of how convergence to
oprimelity may be guavanteed with
Lemma 10, Assume €hat (3) has  finite optima, and let j be
a2 subscyrint foy which some aj > O, Then if A, b, and ¢ are
in egral, any rale for generating bounding forms which spec-
ifaies that the jth columm of A is eventually included in a
tounding form will assure *hat an optimal solution will be
found in a finite number of steps, (The insiusion of aj in
a bounding form is of course unnecessary if ¢ becomes nons

kj

nositive, )

IV, Ruies of Choice,

the freedom allowaed for seiection SEROSY elioriatawis
234 the algerithm is immense., We outline below the various
provirces bn wiich cheice udcurs,

Cefs in the selection of columns of A as candidates

for trarslacion into & Lounding form,




=2, In the seleciion of elemental transformations
to create a vounding {orm.

C=3. In the choice ¢of when 1o apply the bound
gscalation mathod,

C=4. TIn the choice of which maximal prime subfora
to use in 'he first stage of the bound 2scelation method
when wmoye than one is available,

fo vbrain & problem solution expediently and cfficiently
there are several covaiderations which suggest how the range
of alternatives may be narrowed, We examine the fouy regions
af choice in more detsil belew, introducing such consider-
ationz as we go.

=1 is perbans one of the esasier choices. Cerrtainly,
i the setecvicn of columns of A as candidates for transe
Tarion imte the bounding form, we must include ane
associated with a positive cemponent of the ¢ vector, and

s not vnreasonable to cthoose a set of such columns

-

g
wirtceh sre zlyrezdy close to having the boundirg form,

C. ds evitzeal., IYn Jemma 3 it was shown that slemental

trgasformations of the first type (row subtractiong in the
rablery metrix) would alwavs suffice 1o keep the variables
nonnegai ive, Hence elemental transformations of the

socond ype (yow additions), whichk require special cire
cumstances before they are permissible, are not strictiy
neceossaty,  Ghey are, however, trequently desirable,

Mme reasor is as folloaws, We refer again to the formulation
of temma 1 in which fne 1r2nsform R is applied 1o problem

{3 1o vield (4). Censider tne effect of the *vansform R

vy

e
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o TS and vE® are inverse to eich
At

Tz s tae same as W in every component
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Y vinen B P07 we have 20 = w o w
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GG g coupensats of 2z and woare the same.

cvvasfoaraatioay of the Yirst kind we arte

o he soheagn walues of the variables,

poose of rhe gecont kind we are geaerally
tasnfar as raigiop “ne soluticn values may

croarl 1s nzeded to ‘ocate the constrained

cow wdds tlons would seem to be preferable 1o

5 wioen “aey sre available, This surely is

weonorow o uddition 30 is simulraneously

forsd ovons rains s he bounding forme
Gus ot exhesse the tally of considerations

To20 by ovhe argament just indicated, it

favont wwe methods for adding a ceolumn to rthe

e chat reairsd fewer row subrractiocns
bl i other hand, thys s highly
Lot Bune rov rusbtrecltions will create new

her beonade Than will be crected by

Arprgsith o gres ey seiectivity is to tiv to

large as possible for

Lo Terrtics vector a

I

seetn Tikedy 1o fimd thedir way 1o a

cveatuticon methed i in fact the power
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should be rade svborcina ¢ te gefting as many rows and

columns of A into the bounding form 28 nossible,

forys

Ce

8 perhuang #n easicr choice, for which experience

imply that of wheth-

1]
-

may previde an answer. lhe cuesricon is

ey oo appiv the teend escalaiion meihod ©§ soon as o bounde

e

ing {8 rreessdy, oo %6 widil and try (o build 2 lerger

'
Tl

5 oructure  For the methed,  Tn uirion supgests that for easy

problens b2 son ion wmay well be found by a few simple

tesr 1s created, On the

5-#ng belors @ comrlex bonnding

other hrad, for herder preblens it coutd well be ‘hat rying

“noadvence  oword the sojution bef re » gocd bounding form
i3 crected wouid br a wagsced effort in the sense tha-  he

escaletion method will take he variables up 'o he same

in roughiv e sune smount of ‘ime in ny cese,

IFOE
Limited experisnce with problems smell z2nough o be solved
by hend secms L0 supor L1186 notion,

Gt wprears & thas nuint notl for uwritical. Ahonever
e oor ere ofumns of The distanguiched bourding form nave

cocdtdve comooneats i tho same rowy one exvedient

viile oo determining anion one 10 nee in the maximal s bDform

i% famply 1o s5elec  he column assccia od with the larsest

’

ehanient in the ¢ vectur.  This mighn' roisoncb v e made

b

rite which gives first prelerence (o ¢ 1=

"

subordinife fo
UEE thot ure not ,ocated where the I matrix was ofipginntly,

PIRCE We wo o ¢ srvecn v oxeest ©opnsteain 8 dorived foom the

?
e

crapindl ooanepssivaty res'rizcions to be woaker  haon

cE voaere et aned ruoe o vontd he o g wonly tRoogeih e of




temma 7 "0 11 ceinmasz of the distineiished bounding form,
vé ller  hen o'y o o rrive wsubform.  Comple e reduction
couvld be ¢ocried out using those columns whose posirive
comvgnen’ s wes¢ wnigae o heir rows, 'ntil none were lef-
ha cold lopimurels he used. ne delayed choice could
then L. mace b iens from a set of eligible columns -~ hat
Diove @3 nusitive o owpenen § in the same row the column
SC Tty n il ve rminoiogy of lemm. 7, h? e = maX(hj/ejj)P
where j ranges wver ‘he columns indicated. (We reaquire,
of ¢onrse, that 'ke rplic be nositive.) More refined rules
ey be dnwvented 1t thue necd for v iem orises

Vo A Srecific o lgorivhm and iixample I'roblems.

In orter o illusiraie 'ne workings of the cipgorithm
we Wi, frbairagily gesvie on o few cimple rules of choice,
fhe specific meihod which results mav be outlined as fo lowse
1. f the probiem dres not exhibit a bounding form,
3oodimmedislely 0 insiruction 2. Jtherwise, idcntify 1he
aoxime s sendorm B 1f here is 2 ¢oice 10 make among more
tisn e column {or inclurion in 5y give firs' preference
TGotpose noi o indiieilv o in the [ matrix, and of he remeainder,
soloct the oae assecis ed with he largest comnonent of he
ToWenore  Make oy ogerirsable row additions with respect
o the cotums of A& rescciated with Eo (If stiep 3 has pre=
viousiv becr corried cur, exclide any additions which woutld
reyer ¢ oo subievction performed diu step 3.)  Annly the
Deund el ton crow nre untid oll consgtraines of the

aoand, Tor e s dstiedy and ad st the ¢ vector,

<




2 It ¢ iy nonmnsiive, 'he problem is solved, Others
vise, of those coiimmy j of (he A mutrix for which c:jijp
seiect the column | which has the fewest number of positive

components,  If thero wre ties, restrict J to the tied cole

&

wnis @nd choose o so that oy = max(cj)n

Jo  Uonsider ovly those rows of the tablesu ma rix
for weich w, 7700 vick the lexicograrhically greatest row I
from weicng ihemy <ad for cich remaining row 1 resqric-ed ¢s

cbove evilur e (&) the least (positive integer) multiple of

oW i owhiich when subtsec ed from row 1 will make the resuits
ing 1 noningsitive, (hH) the greatest multinle of row I

which can be subtracted from row i and leave row i lexicos
grarhically negative in the tableau ma'rix. Vick from (o)
snd () the multiple that is smallesty, cerry out the dndi~1t=
¢l sub'raction for ¢i1 i as defiped, and return "o ins' rud-
lion 1.

Sny 1ies not resc ved by 1he method may be broken by
seleciing he alternavive wi h the leasy index. We now
salve .he following example problems with the method as oute
tinodo  we Leve raviitioned the iables to segrega e he
coihaos currespording 1o the sturting ddemwrity matrix in

vzdec so keep track of the solutien volues of the variables,

Problem i Minimize 10 wy = Pdw, 4 21w3
subiect o & wy o+ llw2 + 9w3 = 12
oWy 2w2 + Ty = 14
9 Wy oo bw, * 3w3 210
¥oOOW oW 2 0

¥ & 3
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twe difterea rules of choice, he solved 1t in 4

ivuoe nd 3 vave s, rashestive.ye  See Aneeadix 11 for s
pore soompslete compepisen ol Yhe two methods, ) Using he
prses of choaaee soocilicd Cbove, we obrain the some
soence of abier ts Homor, acos, L Ulowine Yo rourseseds -
doaens b odar Terenc eay cogh we oncrete on them in dif-erent
ve w6 o mresent o crohlem for which Gomozvts me hod
Ll Weoopews che segawency of rapler obuoined bv our meho'le
bo boanditg farms 2. 5oz iased Wi th tables (22 wnd (3) cre

Cbown demediziely ol owing thc resvective tfables.
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Gz tuozeding exanple can be

iscd to highlight ¢n inter-

cxting alternate spylicatdion of ihe algori~hm, In +he .ast
step, weere che me nod of emm 5 war wplicd to e 0

Ty ATl
TG St

Vosubfora, i€ would have peen vo:rsible 1o proceec

dif Terently,  The 2X2 subform together with 4t

SONOWE

associn ed d wector detine

‘‘cotlapsed'” constraoin's in rone

nepetive variable: which must te satisfied by any foosible

sptution to ke cempiefe zyoblem, 1f we moks the nonneg.

hoavioy restrictieoas exnlicif we can write Lhe subform wi h
Wit na s ned ddeata v aetrix. as follows,



PAL

[nscecd of using The bound wacadstion method without inter-
tAon, we will work with tiss ~xminded {able -ud intervenc

vhenewor to: 10 x fo wake lepitime e row additions. We then
sbbain the Tollowing sequence of tables, whera at each step

we heve cropesiy adjinsred pae & vector cccording to the
provious tehle, and then made env lepitimete additions,

-1 2 1
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foy

o
it

e g s a2 e

L3

H
ro

t
s
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i

T

H

s

icomeee Crom the Josy orable st he veilues for fhe variables
vodelo eatdsiy fhe consirodals of theoripinel JX2 subforn are
Goand 4, which of couege cre vhe same as obtiined by aprly-

o e weeglay bound zscoicrion mespod,  The emount of

=

caon for clis crse wes perhacs sdgh'ly more whan
vioW The prootar beano escl lation me hod, bl we note has

Sot vher wraioe ngs beoa complete'v sofved the ayprosch

gt nend could 20 move advinsageons (provided, &s 1. the

Sentomoreg kit ihezre o furn oot o be lepivimate (ddioions
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e

dcnce  he finel values for these viriables are (29 30 1d),
which pives *he :djusted ¢ vector in tuble (1),

Bec.use of the swce cevoted 10 their rupresentition,
¢ moncLions required

i may scemoat first plince ha e

with “he sccond stape of  he bound escelation method fre

excessive, JJuwever, roflec'ion Wil show that ¢ number of
s eps of this sceond stige miv be carried out in ‘he emount
of time normally roeguired for afpinele gpivot,

The preceding prob'ems &ére net {0 susgest in any dog-

metic foshion koo 'he nerfermence of onr method vnd Gomnrv's

clrori hm are tilely to comnire., /A< Appendix 1T treues,
there (re reasnns o tetieve the: Gomory's aleorichm may
possibty be ~ore efficien! for =imple problems which both
meibods o handle relsvively eacily, ~owever, some probicms
which «ro dif’icult ¢ hendle wi h Gemory*s ¢'gorirhm should
nor be oo formidoble with the presont code, @@ the list

eximp. o .hows. G. L. T ompson hrs found a Thrce waricble

three inecncii y probiem for which Gomorv's @lrorirthm requires

aver 180T naivers.  onr dleorithm crectes 2 3A3 miximil s~ub-

form from *he preblem ir f ur scers, ina the bound csciiction

cpetied o his wabform is then able 1o mennficture

DFoC N

s

he solarion in a¢ svwe way tha' 10 hendled the i6vird ex-
cmpde problen sbove, In a related vein, ‘he enthor has made
¢ sindy of Comorv's <1l inteecr alrorithm ond develoned a
sunnferentery technique bosed on concepts similer (o those
undociviag the lporithm of this roper which sipnificintly

redaced re namber of sivo s orainirilv required to obioin

-~

a F e e g q
cnouptees b osalution (s N‘,])' “his technicue miv wlso




be cuupled with the present algorithm as n strategy for

accelerotyng convergence,

he have, in the foregoing examples, used a very lirited
rule of choice in order to keep the exposition simple,
in view of lemma 2, there i:r a sence of urnivercality about
thie elemeutal transformations in their applicat-on to this
rroblem, so that a major avenue toward gaining control over
the integer programmwing problem may lie in attempts to
learn the best ways of manipulating thece transformntions,
Theorens about the exit tence of bounding forme, or of
bouscing fornms vwith certarn value for obtaining a problenm
solutivn, ane the secuence of transforrations des igned to
locate them, would certainly be cesirable,

An alternate opportunity for manipulating the problem
structuge to obtain a good bounding form may be to create
derivative inequations by adding together positive multiples
of the currens constraints., PFor example, the principle of
Geussian reduction in lemma 7 could be applied in the
absence of a bounding form so long as no subtractions or
divisions by negative mmbers were permitted. Thus it
might be possible 10 create 2 set of constraints (or even
7 single cons raint) cenviderably nearer the bounding form
than any in 'he problem table, and to use these decrivative
constraints as well a5 the original ones as a guide for the
additions end subtractions of rows, and the snbsequent
al erations of the © vector, The derivative constraints

won'd ne have to be integrat, since the” would neccssarily

consist of rationsl numbers, and the proofs assuming integrali*y

wonld remadin vafid, It is cenceivable that a technique

-




which combined ifhesc considersiione with @ gonod rute for
relecting vhe crememta! Transformations might prove quite

aflfective for certiin classoe of propfens,




) ‘; hy . N 3 P
Syeet oo iewnn . KU exisls s oner for each o poant s
[ U A e T

e . e . e 2 5.0
oy v, rj~ and %S upe inverse to esch other. Since

2

cach ciemental transfermacion consists ¢nrirely of integervs

B H M i H : 2e o Savy g - P
this also amrlies thet hoih Round R aye tnrepralt, hence

411 . . ) y
vhe zolationshiy 27 @ wW¥HT® gives that either of z* or

w* must be inreger wien che other one is, Phe dirgect

correspondence of feasible solutions is observed immediately

+

. » RTRE | . i . a
by substituting Wi in (4) under the assumption that w*
ig fersible irn (3), und by substituting z*I ia (3) vnder
the pzsunption that % is Feasible an {4). Pinaliy, i7
w* iz ontimal for (3), then z¥ must be optimel for 1),
< 1 Heva S et o for whig! "‘/}'5" ) LS opR ik 4
ar else there exasts g 2 for whichz2{Rb) + g S~ BTLRDS bu”

. f\'.' N i - & A 1y a1 .

and hence wb o+ bU < Wb wa whare w = 2P, Dut by fhe
Forepoing vematks, w is also & feoasible solution of (1),

witich is & contradictioen, {he converse proceeds similariy.

Treol of Lemma 2, We must handle lemma o in several par s,

fermark 1o [f B suvrisfics lemma 1 for she irtesmer programming

i

problem of formularion (1), for ail A°, b, and ¢ satislying
vhe fanite optdmality restricticns, fhea R omust bDe integral.

o e g oo 2ras ] . ) i S i
Preof: From forsulation (1) we are given that 4 {A &

and oo g Gy so that we may vewrise 733 and (4) vespec' -

5{-1123}6.‘(." to wA 24 o7 and w (, 0,
{9n) Minamize 2(ib) 1 b

S oY, < T
foeme O30T g o )




. ~ - 0 _ p=l
Sumpose that biﬂ> 0 tor each conponent of b and A” = R™7,

fhen (32) and (22) becouic
(3bv) Minimize wh + b,
9
subject o wR“1§3c° and /20,
(4by  Minimize z(fb) + b”
subject to 23 ¢° and zR 3 O,
We wiil show that for the proper choice of ¢® problem (4b)
must have finite optima when each element of b is positive.

. N Ot
Consider ¢© = ¢ in (3a), where D is integral and has

all pusitive components, and let A® = I. Then (3a) and (4a)

(3c) Mionimize wh + b,
wt
o A

subjest to w 2¢ and w20
(de)  Minimize z(Rb) + bg,

subject o zR2C and zR 20

3 v S . T Z. )
We goe that (3c) is frivielly and uniquely oplimized for b >»U
i

by Le-ting each component of w equal the correspounding

s 2 x ; e .
component of €. But then (4¢) must have the finite optimum

B

. A el -
given by z = ¢ & . drom this we may conclude that any
choice of ¢ which leaves tie sclution set of (4b) nonampty
@loo dmplies that (4b) has finite ontima. Lvidently (4b)
mus! have finite optime whenever thig isg implied oy the
conjoactios of »R7ZL0 and the objactive function, But
{(3¢) has the same obiestive {unction and the existence of

. _— . » . -, A -~
Pandoe ontims there 1s implied bv zRZ ¢ and  zR =0,
ot R o 7,'.‘ . q 0 — . )
sance o O, 2 20 tasides zRZ0, and if the latter

faplive $he absance of finiie gptima the former must also.
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But since (4c) does have finite optima, we woauclude by
contradiction that {4b) does teo.

We now show how we may obtain a further contradiction
by assuming R is nonintegral and satisfies lemma 1, If
. W A , . : A I IR A NP B
R satisfies lemma 1, then the optimal solution ¢~ = ¢ R~ of
{4c) must Le integral given that the optimal solution ¢ of
Cae ) t e 3 - i o " Y RNANFEY |
{3c) is integral. We observe morsover that 2z = ¢ = ¢'R
is a feasible solution for (4b), since substiruting this
value in the two constraints gives z = ¢® 2 ¢°, and
N
c

2 0, where the inequations are more restricted

zR o= %) =
than we ltave shown them, but in ary case satisfied, Now
suppose that R is fractional in some component in the ith
A A
row (ﬁi Jo We selsct ¢ large enough so that ¢ + (zi } e Oy
and define z* = % + (0 0,..1;5.,.0), where as before
A e i . . . .

¢® =2 ™1, Then 7% is a feasible solution of (4b) since

A

c

-

clesriy zv &£ o7, and z%R = ¢ + (rio)'>~0 satisfies the
zccond constraint, We note from this last that whenever
¢ is integral, z*R is not, But the feasible sciution of
{3b} corresponding to »* of (4b) is given by w¥ = z*R,

which Ccontradicts the assumption that R satisfies lewma I,

[

St

Merefore, R nust be integral, {(We note that if e? = A (Oee- Lot
then 2% is ailso an opiimal solution of (4b) for which the
correspouding optimal solution of (3b) is nonintegral.)

Remark 2. R saiisfies lemma 1 if and only the determinant

of R, {R] == +1, given that R must be integer,

1, then R is nonsingular and has an inverse,

heace piven rhat 30 3s intepger lemma ) must be satis{iea.

~

i tho ofther hand, if R makes lemma I true, R°1 ;s eoisl,




and by a reapplication of the reasoning of Remark 1 we

know that it must be integral, But ER} \R”ll = {11 = 1.

Since the determinants of integer matrices must be integers,
1 ""’l :

we have R} = (R I

Remark 3. We need only consider the case vhere (R, = 1,

since Dy reindexing two rows oY cclumng as the lemma pexmits

ug te do, we may change the sign of the determinant if it

ig negative,

Remark 4. We will dencte the ‘ranspose of a matrix by the
primwe (') supecscript, Let h be a column vector of R {(or

eny integral column wector). Then there exists a matrix X
which can be expressed as 8 product of elemental trans-
formations such that h'X? = (0 0 ,,, O k) where ¥ is positive.
Proof: We need only to show tha” the remark holds i)/ 9

are both positive or both

t ow :
h ‘hlg h If hl and b

1a 2
negative we may proceed by always subiracting the smaller
(in absolute value) from the larger, giving a stractly
monotone decreasing sequence of absolutfe walues until,
(since they are intreger)} one of the components is zere.

if we are left with (g 0), where we do ant specify whether
g is positive or ne;gativeE we may change it to (U g) by
the sequence (7 0), (g g}, (O g2, using the obvious
edditions and subtractions. If we ¢nd up with (0 g) = (0 <k},
we may ebtain (U k) by the sequence (U <k}, (- =k},
(«k W), («x kI, {0 %), If hy and h, are of difforen
signs e may first add the larger in absolute wvaiue !0 the

smaller and procecd as before,

Rewark 5. Using the method of Remark 4, we muy create ar




lemental transformations which

o}

A which is the nroducr of

will iransiorm B into the ddontisy matrixe Temna 2 f0!lows
A 4 T T W I

sroef . Selecr {irgy the last coluwn of R, and reavoe all
componests o ™ except the boviom ong widd'o owe leave
cosiCives  Yhen meve 1o the next to the last colusn of ity

and exctude the botiom sow, accomplishing the same vesal:

it O7s an all reows except the next fo tas' and pessiliiy

the lag:’ Since rhess row additicons and gubrracticns &6

nel savoive rhe last row, none of the %y in the lzst

zzro, and ail elements along the main diagonal positive

tha ‘“he

(e d
e
2
=
3
o
A
=
(]
=

excopi nossitly the one ig the firs

.

determinent of tnis finul mateix R is piven by X i = X%y =
1ol = 1, since the deteiminant of eech elemental transiomuniion
is 1. Finding tie value of |k} by cofacrors of trhe tasr
columin, we see that the bortow element on the maip dlajyomad,

ChoIm opusitive, wigr b2 1o oand 1rs minov must alasag be

ively Dv0B RANOL TO MInor wo annly the

Pyl aauggr e

Sl pnmaenent tn goo that all the diagonal elemania rast
pr i, dnciudiog Yiuslly the last. Vinag we muy resdi iy
rehe ol o waciaane pomdisgonal earries in che walrix z.ovo

o odeddiug tr subtraciing che approprictie imveger wul:iole

ciotie dleponad clorenis, Hence o have found g oprochieso
.
£ T ey bl gy 44 e P 1 Yol e PR
of elementnl rangformavicus X osach that X R = 1. Leiding
. - "‘. NS .’:'"".‘f"; i 0 ,.,-..J‘,..dl




Proof of Lemma 3. Since F;s and 7% are inverse to each

other, when R = Tis we have z* = w*’rgsp and z* is the same

as w* in everv component except zs* = wr* + ws*o Hence
rs

T

2

. . . T
z¥ is nonnegative whenever w* is, When R 0 Z¥ = w"f1 i

and z* and w* are the same except for zs* ws* @ wr*a

Hence we must assure that zs* is nonnegative in some other
way., In the constraint z(RAYZ ¢, we have the Jth column
of RA the same 25 the Jth column of A except in the vTli row,
in which we find the new coefficient (arj ¥ &sj)o Under
condition (i) of lemmz 3 this coefficient must be nonpositive,
as must all other coefficients in the Jth column except
asja We may rewrite the constraint associated with column
J as

a z »c + Lz : k # s), where L is a nonnegaive

54 J k
linear combination of the zy for k other than s, Since for
any feasible solution w* of (3) we have zk* = wk* for k # s,
and since cJ‘Z 0 by (i), ZS* must be noanegative in oxder
to satisfy the above constraint,
Proof of Lemma 4, As long as we have two positive infegral
elements in the Jth column we may always subtract the cue
in the lexicographically larger row from the eone in the
lexicograrhically gdaller row while maintaining both
lexicographic ordering, and by lemmz 3, nonnegativity.
since at lecest one of the positive coefficients in the J+h
<

column is reduced by ar integer amount at each step. as

long as more than one ¢Xists, eventually all but one must

becom: nonpositive.




w11

Proof of Lemmz 5, Because of the form of I, each individual

constraint from the congiraint set wbh 2 d may be written

in the form d, w,~»d, + L(w 3 k # i) where d is the
PRI T | k i
J
uniaue positive combonent in the Jth celuwmn of 0, and L is

a nonncgative Linear combination of the Wk for kX ¥ i,
Since B containg exactly those rows of [ in which the
positive components abpear, we may rewrite the above as

P e { o I «f 3 Pl ® v o
by, 22 d + Lk k #£ i) Ll(wh' w, ¥ x, ) where again

ijtiT )
bij is the unique positive component in the jth column of
i LU is a nonnegaitive linear combination of the remaining

)i\

% o and L, is a nonnegative linear combination of those

Y wliich are not represented by any Xeo Since we require
H

any feasible solution te be in integers, we may write
x, 24, + Loy k¥ i)/E. D
i <: 5 o gt <7 / 13/°
wne know that each of the X, must be nonnegative, hence if
there is any dj that is nositive we obtain a positive
lower bound for the corresponding x;, letting LO = O,

But as soon as this lower bound for some xi is known, then

we wmay compure a lower bound for the LO associated wi‘h

cach of the other X heace giving new bounds for tlhese X0

=

as 11 sten 3 of the method of lemma 5., If we wish 10

rerinter only thie iuceemental values given 10 the % in

-~

rach step we may redefine each di to equal the old dj + L,

~

As leong as any oi these adjusted di remain positive w¢

may increment the lower bounds of the corresnonding §°
Assuming the feasible solurion set contains {inite points,
the process muest eventnaily stop since we dre incrementing

.

rhe variables by iateser anoants, At this point the constraints




{3 .1

of the original inequation wh 2 d must all be satisfied,
for otherwisc one of the adjiusted d, would still be positive.
J

Proofs of Lemma 6 and Lemma 7, We combine the proofs of

these two lemmas since the justification of the method of
lemuz 7 proves both. We assume that we have adjoined the
1dent ity matrix above E, s=o that when we have completed
the Gzussian reduction we will be able to identify the

inverse matrix B“l of the submatrix B of [ which has been

changed to an identity matrix, As stated in lemma 7 we
assume that E is indexed so that its pesitive elements lie
along the main diagenal., Suppose hj > 0 and we carry out
Gaussian reduction by the method of lemma 7 with the jth
column of L., We will denote the values of the coefficients
af‘er ‘he reduction by the prime (°) shperscripfo Then

the formila for the reduction as it affects E and the

adjoined h vector is

e Je for k = ) (1)
" i ® i )
eik N
o © - 0 o,
? ik~ Sk eij/ejj for Xk # J  (2i

where 1 ranges over all the rows of E. Similarly,

/hk/ejk fo
\

k = j (3)

e}

h =e °h /e  for k # j (4)
kogk g 3)

froa the forn of £, € 50 if and oniy if i = k. e »ill
shew that fhis relation continues to hold after the recuiction

]
with the possible exception that ekk becomes nonpositive

v
when h. .2 U, Since e is positive. obviously the dgove=

k iz




mentioned relation is not changed by (1). In (2) we chserve

that e,k is always acrnpositive, and eij is nonpositive
J

excepr wien i = j. ‘hus e © e, fe. . is nonnegative for
Jeoo2) 13 ]
i # j, and subtracting it from e, lesves e, « e. for i #
a ik<r ik

PO . "t [
M i=j, thene, =2, «e_ ° e Je& =0, Thus the
JE Jk 5L SR N &
redusting insures vhat neone of the €y which were uripinally
nonpositive will ltater become nositive, Since by this
nethod we are always dividing throsgh some constraint by a
resitive element (e ), followed by adding a nonnegative
JJ
multiplte (ne,k) of the resulting coenstraint to ewch of tie
J

arhers, we are prescrving the direction of the inequalities
of rhe constraints of each step, Moreover, for the seme
two reasons, the inverse of the original matrix which is
beinp impiicitly calculated in this fashion must have all

nonnerative comnronents, since the identity matrix begios
nounegavive. Finall'y, because the inequalities are preserveo,

7 ?
ekk canmot become nonpositive for hk.ﬁwO or else the fact
that the variables must be nonnepative imnlies that rhe . . i+

easible solution se’ of the problem is empty. Thus the
method of lemma 7 is well=defined,

e foxm of the coastraints iwnlies as in the proofs

of the orecedinp two lemmas that the vsriable yF asseCigted
with the kth row of £ is bounded {rom below b the

q ¢ .l \\ o .
reiation v 2 hofe 3. [he corresponding vatue for

Tk PN K Tak/

?j Caivh § ddentified as above) will be unchacged by the

We abserve by the

5
H

teduct lon step sinece b, Je., = h fe |
3 JJ 33
Followrip ihe: che lower bound for Yy w kK & J must eirher

o

lacreas: by the tedunticn sten or sfav the same (previded

At




£ 03, Since e ie nonpositive for k # §, and sinco
ke 1k

WO Carey ea fhe reduction ster only when b 2w, v oseu

J
v
bron (1Y that h s b for k # j. As polnted ot eociici,

Y . &l L . { Vi ey, /- T
) ; 2 e h, Je = h /fc . as ¢ciaimaed
RN 31 k' kk® K kkC

NLOR THO PrOCO8s A0S comptetad we we bt ohlave Carrnoed

A hue recaction step wath every column o wiich RS

seothaty, e = 1 for these columny, and the Dound

' Kk
. X . o -
$ony Y 17 sipinly o fVEY DYV Y M :p 2
A X R R i ol " ~ H “
b a = <\k /

Lot ons denoie the vector oonsisting of freol posituve

by d . awd toe d denote she origianal vector

to hoas d corgesponds to h. By the nature of the
g . T, .

Gancsion reduction method, ¢ is the solution of

sretion XU o= d, where 3 is the submatrix of v ieh i

‘e ddertity mutrix in the rrecess of

e
o
Y
o~
-
3
-
fueR
-t
P
-~
»

ARTTE EFre TS VI s S and X corrosronds fo B oas v ocorrvaron g

; : e oL S : SR
LA g chos owe have do=od B0, and we see that loas

LA Liovhe r owectar defined in lemma &, woe have stroady
i ] . P
LA Lt % nnsasts of Dundsgetaum fonpchenys. Re
st fanaiily osnoy that vo rodyction which Ccroa‘es an Tl oo
. - PRSP Y -
catria o oad of oa difterenr submatric oof B owicl dortvoa
o iede B SRVl i LtV
FaN
1d f . PR .
Frest, wr o souzepve that » = d srtistaes the constraiy g
o dy PTTOVEGRE W e oD ronasTd X e kR AR ERme ), X E.
2 ORAT o U= ks Ad L BOrE £ ©rsc Srdrecty af LR Gonssiav
i R s "~ Ay
et Ud o e e, b ia oatso oa selity onooloa v b, wiere
.A.
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z* = 0, Thus if R is the transformation whach changed

the tableae metrix of the oririnal rroblem inio thas of
the fanaty v ¢ have by lemma 1 othat the ortimal sojution

=)

ol oo opredlen piven by the orspinel tsbleau matrax an

¢ oyec.ur is wv o2 2%K.  In this Cgse; sinCe 2 = &
we s Coalse, we now sack a vector wO so vhat the final

r vector ¢ and fthe originsl ¢ vector cl may be reiated
wo¢o o= O s <27, and the final bU equal 1¢ rhe original

. g A a
toorlus Wb Then by lemma 8, riven thaty W Is the oprimal

!, «
=
P
e
=
f=
e
[ u)
~
=
o
Y
~
)
e
o
T
=3

we are assvred that w v wY 18 the onbtimal soilution ¢ the
ayiginal nooblem

Mipinize  wh

subject 1o WAt oo,
$
. A3 T ’ “ . » - -
2rnrd v b, the ontlmal setebtion tor the oraiesval nroblem

r

seowsrbe wt o oarayicdod el o snch o w o £x3sTs, By nomw ns
that rhre ova the gasd,

e the sugcessive s s of Glrerinr "he € oven oy -
Papaye vith oo gl aretied temma 5 a8 varicss veints ‘o

i
chraan aew values For o t0s Comropents. Let us densto £0¢
tirnt oowector ¢, By O,y *hie secong b oy arel R0 forohn,
i yA

T : . . . G
woversoendingiv, Lot us denote the first wonsed tg change

Ly e Gy by W, the second by v, erc., Then we have

': 2 1 2
C..= O+ WA

¢ 1 11

: b3 2 ‘:a - “ -./\ -

i < o o




i

el r’xi dcuet O for cacn 1 othe A o trix of (be probienm

Pt polnt whew O, was chaoged into “i*i“ Crom the

{ ropeins G, =0 = WA =0 =% A <« W2, and in

e

|
—
[
3

L. 4 o 13

penaral g, T (O o= thl = WA e .o = W A L Butl each
1 R s

A. wig chtained from the oxiginal A by some teansformacion

3

14

Rjg so that by substituting Ai - R_A, we obrain
i

O, . =0 = w R’
1+ H 11

: equal ¢ sec ¥
141 paqual CF we sec that w

R W R e ., ¢ W R . (Ihe identical
11 o < d

scquence of reasoning usine b in place of A and bU in ptace

P W R, ¥ oese ¢ W R DA
o & i G A

Hence le:ting C ® exists and is

« L8]
riven by woom W

res
e

4 # - -} ‘. 'Q (- S H s
of ¢ shews that the w® which translaves the aripginat b“

sbrained, )

3
~

in

. . . Oy , .
ivto the final b ¢ w D is the same as ¢ e ju
U

Kather than try to comrute wP by the nreceeding €XrIessio o,

ot

however, we may find 11 wore readily by resrriciine o and
‘ t

¢ to those comhenents of ¢ associated with ‘Lo oriofna!l

constraintx wli=2 0. we¢ deante this resricted ¢ b o

. A . o . g : . .
anl obtein ¢ = ¢ - w I, since the yestricte. ¢ is . sl ~o

Prace the oprimal solation to the ovigunal preblem i3

aven the lomra




P
Prour o Lemn )00 fhe srect ot fhis iemnia is paeen by

Mo Lsh Gomory o Jemonstrate the convergence of his alj

. - .
viterer sipovichm {see {3 ). We vind nat vercoduce he

el pey e siece the trans'ations of terminology {inter-

orauging vows and columng, replucing lexicopraivhic nositavity

bv neearivity. subs ituting bounding form for pivot row)
are straight forward, from which the applicability of the

sroof as it appears in [ 31 is immediate.,
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Gemery s ALl Inteper Alporathm: Comparison and Contras

Althenegn Gomory develons his all ainterer alporithn
in cerms o ddeal variables and pivoting ercerations, 1t nay
be cx»lained very simply by mears of the concerts presenr..d
in this paper. Such an c¢xnlanation will be useful for a
clcarer understanding of rhe relation of the two algorithms,
As wiil be shown, Gomorv’s algorirhm may be regarded esscnrially
4s a variant of the present alébrifhm in which (i) freedom

of choice in applying the elemental transformations 1s .=

Vowed for norestricted routine to insure methodicai

Ed

progression toward a sciution with each strep, Tt ali:

arolying the resiristed cuie, 8 multinle of one of the
construinuing inequatiens is added to ancther to produZe ~he
type of constraint manufactured by lemma 3 in which exactly
cpe cocflicient is posirive, (i:21) a'’ row additions
nosaable i the new coitstrain' are carried out, and {i¢)
the Joweyr bound daplied for the sinpgle variable with a

)

positdve coefficie ¢ in this new constraint is calcslated,

voector ad pusted accordingly.

h

st
.
[
B

P

we hove andicared e the first examvle nrobles in

eckien ¥ orhat the restrictod veorsinn of onr metvhod obrans

Che sam gequence of Cabites as Gomoryts method.,  hisg 1a
aotoentarely accidiatal, e simn'e rule foar yow subtracticns

woacl we actcoied Tor ¢.r examnie method 3s the sane ono
which Gorare¥s meth- uses in the first stape of hig @ ive:
operation.  However, bocause the twe methods opera‘ce

" ":

st Cdlreromt ty on MAriven cable, thit actaal rew s

rac ity s owvascable o cach rav o not concide &Yoo tue st




Sa.
-t

fow sreng, Moreover, the rules for row additi-ns with
e wwo methods are slightly different.

From the standpoint ot our alporithm shesc differences
ave :rimarily differences by designg while for Gomory®s
method they are mainly differences of necessity, uUne reasor
for this, as we have cbserved, is the limitation Gomory's
algorithm imposes on the selection of elemental trane«formaticns
in the first stage of the nivoting process. Ancther reason
is an equally strong limitation imnosed on the second stage
of 'he pivo'ing process, in which Gomorv®s mcthod uses the
s'rategy of combinineg two of the problem constraints in‘o
a mew one in order to find & lower bound for one of *he
problem variables. (1! should be emphasized, in 1his regard,
that Gomerv's alpgerivhm is not actually divaded into the
Ystapes' we heve identified, nor is it designed "¢ employ a
“stratepy’ of combining tuo problem constraints fo
lowwer bounds for certain variables, ‘Y have »nr this con-
s ructi o on Gomory's method 1o explein 4t In te;ms af e
ideas develoned in this paberg though the medhod
evolved from o gomewhat different set of notions.)

Ho'li of “he !timitar3ons we have indicated pesnis fyon
concessi ny ta the pivo'ineg rationale casried over from

porithm, which requires the ¢ yector to by alwe

rr
—
-
o~
o
it ]

a caca step, Thus he method lgnores the possibitity that
some synthosis of constraints oiher than the one 10 eml ouvs
may ¢ccasiunally be porve desirable for exncal lue ¢ nvirponcg,

SuCn A Possibility is nod only meaningful da oonr wiporath-,

Byt an syires oo by the method of lema. V) Ay ve v #lvaey
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Ihe specific way in which Gomory's merhiod accomn’ishcs

the secend s*age of 'hie pivoting process may be described

[

o

gs follovs, 'ho first step is to select an unsatisf
constrainy J and carry owt the row sub‘ractions detfined in
step 3 of the example method in Section V. By applying
these operations *o “he constraint wli” O,which is alwavs
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